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Abstract. From a series of zonal mean global stratospheric tracer measurements sampled in altitude versus latitude, circulation

and mixing patterns are inferred by the inverse solution of the continuity equation. As a first step, the continuity equation is

written as a tendency equation, which is numerically integrated over time to predict a later atmospheric state, i.e. mixing ratio

and air density. The integration is formally performed by multiplication of the initially measured atmospheric state vector by a

linear prediction operator. Further, the derivative of the predicted atmospheric state with respect to the wind vector components5

and mixing coefficients is used to find the most likely wind vector components and mixing coefficients which minimize the

residual between the predicted atmospheric state and the later measurement of the atmospheric state. Unless multiple tracers

are used, this inversion problem is under-determined, and dispersive behaviour of the prediction further destabilizes the inver-

sion. Both these problems are fought by regularization. For this purpose, a first order smoothness constraint has been chosen.

The usefulness of this method is demonstrated by application to various tracer measurements recorded with the Michelson10

Interferometer for Passive Atmospheric Sounding (MIPAS). This method aims at a diagnosis of the Brewer-Dobson circulation

without involving the concept of the mean age of stratospheric air, and related problems like the stratospheric tape recorder, or

intrusions of mesospheric air into the stratosphere.

1 Introduction

In the context of climate change, possible changes of the intensity of the Brewer-Dobson circulation are under debate. Climate15

models predict an intensification of the Brewer-Dobson circulation (Butchart et al., 2006). Engel et al. (2009), however, found

a weakly significant slow increase of the mean age of stratospheric air. The latter is defined as the mean time lag between the

date of the transition of tropospheric air into the stratosphere and the date when the mixing ratio of a monotonically growing

tracer was measured in the air volume under investigation, and its increase hints at a deceleration of the Brewer-Dobson

circulation. These measurements have been challenged as not representative (Garcia et al., 2011), and global mean age of air20

measurements by Stiller et al. (2012) suggest that the true picture is not that one-dimensional. Instead, stratospheric age trends

vary with altitude and with latitude. Determination of the age of air and its use as diagnostic of the intensity of the Brewer-

Dobson circulation, however, has its own limitations: First, due to mixing processes, the age of a stratospheric air volume is

not unique but characterized by an age spectrum, on which some ad hoc assumptions have to be made (Waugh and Hall, 2002).
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Second, the most suited age tracer, SF6, which has significant and monotonic growth rates in the troposphere, is not fully

inert: It has a mesospheric sink (Hall and Waugh, 1998; Reddmann et al., 2001) and introduces some age uncertainty when

mesospheric air subsides into the stratosphere in the polar winter vortex (Stiller et al., 2008). Third, the determination of the

mean age relies upon a reference airmass where the age, by definition, is zero. When the age of air concept was introduced, the

reference was simply the troposphere, which is well mixed and thus avoids any related complication (Solomon, 1990; Schmidt5

and Khedim, 1991). Since the age of air has become a model diagnostic, the modelling community has established the upper

edge of the tropical tropopause layer as a reference (Hall and Plumb, 1994), which makes a difference due to the slow ascent

of air through the tropical tropopause layer (Fueglistaler et al., 2009). For model validation, however, this redefined age of air

is of limited use, because no long measured time series of tracer mixing ratios are available there.

Facing these difficulties, it is desirable to infer the atmospheric circulation directly from tracer measurements, without going10

back to the age of air concept. Multiple approaches have been developed to infer windfields from measured atmospheric

state variables. Sequential data assimilation, and in its optimal form, the extended Kalman filter approach (e.g. Ghil and

Malanotte-Rizzoli, 1991; Ghil, 1997), calculates the optimal average of the forecasted meteorological variables for the time

of the observation and the observed meteorological variables themselves and uses this average to initialize the next forecast

step. The wind field is calculated by a dynamical model. This method involves the generalized inversion of the observation15

operator where the forecast is used as a constraint. In contrast, so-called1 variational data assimilation minimizes the residual

between the forecasted and the measured atmospheric state variables by optimally adjusting the initialization of the forecast

via inversion of an adjoint forecast model, constrained by some background state (Thompson, 1969). Both approaches rely on

dynamical models2 and are suited to infer the most probable atmospheric state variables rather than the windfield, which is a

by-product of the assimilation. The windfield or atmospheric circulation can also be inferred directly by kinematic methods20

from tracer measurements. Such methods rely solely on the continuity equation, do not involve a dynamic model, and thus do

not depend on any ad hoc parametrisation of effects which are either not resolved by the discrete model, computationally too

expensive for explicit modeling, or simply not well understood. While this work is targeted primarily at an assessment of the

Brewer-Dobson circulation, its applicability is much wider and includes stratospheric-tropospheric exchange, the mesospheric

overturning circulation and others. Early approaches to infer the circulation from tracer measurements include Holton and25

Choi (1988) as well as Salby and Juckes (1994) who used approaches which share several ideas with ours. Direct inversion

of wind speeds from tracer measurements in a volcano plume has, e.g., been suggested by Krueger et al. (2013), however

without consideration of mixing. The continuity equation including diffusion terms has been exploited by Wofsy et al. (1994)

for assessment of diffusion of stratospheric aircraft exhaust.

In this paper we present a method to infer two-dimensional (latitude/altitude) circulation and mixing coefficients from30

subsequent measurements of inert tracers. The application of this method, i.e., the inference of the Brewer-Dobson circulation

from global SF6 distributions (Stiller et al., 2008, 2012) measured with the Michelson Interferometer for Passive Atmospheric

Sounding (MIPAS), is presented in a companion paper. In order to avoid that the reader does not see the forest for the trees,

1The term ‘so-called’ is used here, because it is challenged that this method is really variational in the context of discrete variables (Wunsch, 1996)[p368].
2This statement refers to meteorological data assimilation. Chemical data assimilation uses chemistry transport models.
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we give a short overview of our method in Section 2. The prediction of pressure and tracer mixing ratio fields on the basis

of the continuity equation and related error estimation is described in Section 3. The estimation of circulation and mixing

coefficients by inversion of the continuity equation is presented in Section 4. In Section 5, the applicability of the method

and the need of further refinements is critically discussed. The benefits of the method are discussed in Section 6. The paper

concludes with recommendations how these results should be used and with an outlook on future work (Section 7). Changes of5

the Brewer-Dobson circulation during 2002-2012, i.e. the MIPAS mission, are currently investigated by means of this method

and will be published in a subsequent paper.

2 General concept

Knowing the initial state of the atmosphere in terms of mixing ratio and air density distributions, wind speed and mixing

coefficients at each gridpoint, a future atmospheric state can be predicted with respect to the distribution of any inert tracer.10

This procedure we call the forward problem. If no ideal tracers are available, source terms of related species have to be

included in the forward model. The goal of this work is to invert the forward model in order to infer the circulation and mixing

coefficients from tracer measurements by minimization of the residual between the predicted and measured atmospheric state.

This approach is complementary to free running climate models because it makes no assumptions about atmospheric dynamics

except the validity of the continuity equation. It is further considered more robust than age-of-air analysis (Stiller et al., 2012)15

because it does not depend on a reference point where the age is assumed zero, nor does it require knowledge on the history of

an air parcel.

3 The forward problem

The forward model reads the measured atmospheric state at time t and predicts the atmospheric state (number density of air, c,

and volume mixing ratios, vmr) at time t+ ∆t for given wind vectors and mixing coefficients representing the time interval20

[t; t+ ∆t] by solving the continuity equation. The continuity equation allows to calculate the local tendencies of the number

densities and volume mixing ratios. These local tendencies ∂ρ
∂t and ∂vmr

∂t are then integrated over time to give the new number

densities and mixing ratios.

3.1 The continuity equation

The local change of number density ρ of air is in spherical coordinates (for all auxiliary calculations, see supplement):25

∂ρ

∂t
=−1

r

∂ρv

∂φ
+
ρv

r
tan(φ)− ∂ρw

∂z
− 2ρw

r
− 1
r cos(φ)

∂ρu

∂λ
(1)

where
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t = time

λ = longitude

φ = latitude

z = altitude above surface

r = rE + z

rE = radius of Earth

u = (rE + z)cosφdλ/dt

v = (rE + z)dφ/dt

w = dz/dt
Here the shallowness approximation (Hinkelmann (1951); Phillips (1966), quoted after Kasahara (1977)), which is, often im-

plicitly, used in the usual textbooks on atmospheric sciences (e.g. Brasseur and Solomon, 2005, their Eq. 3.46a), is intentionally

not used for reasons which will become clear in Section 3.2.

The local change of the volume mixing ratio of gas g can be calculated from known velocities and mixing coefficients as5

well as source/sink terms as

∂vmrg
∂t

=
Sg
ρ
− u

r cosφ
∂vmrg
∂λ

− v

r

∂vmrg
∂φ

−w∂vmrg
∂z

+
1
r2

∂

∂λ

[
Kλ

cos2φ

∂vmrg
∂λ

]
(2)

+
1

r2 cosφ
∂

∂φ

[
Kφ cosφ

∂vmrg
∂φ

]
+

1
r2

∂

∂z

[
r2Kz

∂vmrg
∂z

]

where
vmrg = volume mixing ratio of species g

Kλ = zonal diffusion coefficient

Kφ = meridional diffusion coefficient

Kz = vertical diffusion coefficient

Sg = the production/loss rate of species g in

terms of number density over time

10

(Brasseur and Solomon (e.g. 2005, Eq. 3.46b) and Jones et al. (2007)).

Since we are only interested in a two-dimensional representation of the atmosphere in altitude and latitude coordinates, zonal

advection and mixing terms are ignored in Eqs. (1–2). In this two-dimensional representation, all atmospheric state variables

represent zonal mean values, and the diffusion coefficient Kφ does not only describe physical diffusion but also eddy diffusion

components arising from the symmetric part of the two-dimensional eddy tensor. Accordingly, the velocities are no longer15

windspeed only but include also an eddy component arising from the antisymmetric part of the eddy tensor (Ko et al., 1985,

and references therein) and thus are effective transport velocities. Therefore, the transition from the 3D to the 2D system and

involved absorption of eddy flux terms in mixing coefficients and velocities implies a re-interpretation of the relevant quantities.
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Details of the transition from the three-dimesnional to the two-dimensional problem are discussed in Appendix A. The local

change of number density ρ of air in a two-dimensional atmosphere thus is

∂ρ

∂t
=−1

r

∂ρv

∂φ
+
ρv

r
tan(φ)− ∂ρw

∂z
− 2ρw

r
(3)

and the local change of vmrg is calculated as

∂vmrg
∂t

=
Sg
ρ
− v

r

∂vmrg
∂φ

−w∂vmrg
∂z

+
1

r2 cosφ
∂

∂φ

[
Kφ cosφ

∂vmrg
∂φ

]
+

1
r2

∂

∂z

[
r2Kz

∂vmrg
∂z

]
(4)5

In order to comply with the continuity equation, zonal averages of vmrg have to be calculated number-density-weighted.

3.2 Integration of tendencies

Integration of Eqs (3–4) is performed numerically for timesteps of ∆tp. For practical reasons, processes (advection, diffusion,

sinks) are splitted, i.e. the tendencies due to these three classes of processes are integrated independently. The timesteps ∆tp

used for the integration are chosen smaller than the time difference ∆t between two measurements, in order not to clash with the10

Courant limit (Courant et al., 1952). In the following we call ∆tp ‘micro time increment’ and the latter ‘macro time increment’.

The atmospheric state after a macro time increment is predicted by successive prediction over the micro time increment. In the

following, index i designates time t, i+ 1 designates the time t+ ∆tp, etc, and I designates the time after the final micro time

increment, i.e. the next macro time increment.

For the discrete integration of the advection part of the tendencies the MacCormack (1969) method is used in a generalized15

multidimensional version similar to the one described by (Perrin and Hu, 2006). This is a predictor-corrector method. For a

general state variable c(t,x,y) = ci(x,y) at location (x,y), and time t with e(c) and f(c) being functions of c, an equation of

the form

∂c

∂t
+
∂e(c)
∂x

+
∂f(c)
∂y

= 0 (5)

is solved by preliminary predictions of the state variable as a first step: x is20

c∗i+1(x,y) = ci(x,y)− ∆tp
∆x

(ei(x+ ∆x,y)− ei(x,y))− ∆tp
∆y

(fi(x,y+ ∆y)− fi(x,y)) . (6)

These are then used in a subsequent correction step which gives the final prediction:

ci+1(x,y) = (7)
1
2

[ ci(x,y) + c∗i+1(x,y)− ∆tp
∆x

(
e(c∗i+1,x,y)− e(c∗i+1,x−∆x,y)

)
− ∆tp

∆y
(
f(c∗i+1,x,y)− f(c∗i+1,x,y−∆y)

)
]

Application to the continuity equation in spherical coordinates requires reformulation of Eq. (3) (c.f., e.g., Chang and St.-25

Maurice, 1991):

∂r2ρcos(φ)
∂t

=−∂rρ v cos(φ)
∂φ

− ∂r2ρ w cos(φ)
∂z

(8)
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The predictor of r2ρcos(φ) is then calculated as

[r2ρi+1(φ,z))cos(φ)]∗ = r2ρi(φ,z)cos(φ)− ∆tp
∆φ (rρi(φ+ ∆φ,z)cos(φ+ ∆φ)v(φ+ ∆φ,z) −rρi(φ,z)cos(φ)v(φ,z)) (9)

−∆tp
∆z

(
(r+ ∆z)2ρi(φ,z+ ∆z) wφ,z+∆z cos(φ) − r2ρi(φ,z) wφ,z cos(φ)

)

and the corrected prediction for ρ then gives

ρi+1(φ,z) =
1

2r2 cos(φ)
×
[
ρi(φ,z)r2 cos(φ) +

[
ρi+1(φ,z)r2 cos(φ)

]∗− ∆tp
∆φ

[
[ρi+1(φ,z)rv(φ,z)cos(φ)]∗ (10)5

− [ρi+1(φ−∆φ,z)rv(φ−∆φ,z)cos(φ−∆φ)]∗
]
− ∆tp

∆z

[[
ρi+1(φ,z)r2w(φ,z)cos(φ)

]∗

−
[
ρi+1(φ,z−∆z)(r−∆z)2w(φ,z−∆z)cos(φ)

]∗]
]

For the local change of mixing ratio, operator splitting is performed. The horizontal and vertical advective parts of the continuity

equation for mixing ratios in two dimensions are transformed into the following Mac-Cormack-integrable forms:
[
∂ r vmrv

∂t

]

adv.horiz

=−∂vmrg
∂φ

(11)10

and
[
∂
vmrg

w

∂t

]

adv.vert

=
∂vmrg
∂z

, (12)

respectively.

For the diffusive component we use simple Eulerian integration:

[vmrg;i+1(φ,z)− vmrg;iφ,z]diff =
∆tp

2r2(∆φ)2 cos(φ)
· (13)15

[
(Kφ(φ,z) +Kφ(φ+ ∆φ))cos(φ+

∆φ
2

)(vmrg;i(φ+ ∆φ,z)− vmrg;i(φ,z))− (Kφ(φ,z) +Kφ(φ−∆φ))cos(φ− ∆φ
2

) ·

(vmrg;i(φ,z)− vmrg;i(φ−∆φ,z))

]
+

∆tp
2r2(∆z)2

[
(r+

∆z
2

)2 · (Kz(φ,z) +Kz(φ,z+ ∆z)) ·

(vmrg;i(φ,z+ ∆z)− vmrg;i(φ,z))− (r− ∆z
2

)2 · (Kz(φ,z) +Kz(φ,z−∆z)) · (vmrg;i(φ,z)− vmrg;i(φ,z−∆z))

]

Sinks of the species considered here are treated as unimolecular processes (c.f., e.g. Brasseur and Solomon, 2005, their Eq.

2.27d) and integrated as20

ρg;i+1 = ρg;ie
−kg∆tp (14)

where kg is the sink strength of the gas g.

The abundance of gas g after time-step ∆tp is then simply the sum of the increments due to horizontal and vertical advection,

diffusion, and chemical losses.
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Admittedly, there exist more elaborate advection schemes than the one used here. However, the need to provide the Jacobians

needed in Sections 3.3–4 justifies a reasonable amount of simplicity. Further, numerical errors cannot easily accumulate,

because after each timestep ∆t, the system is re-initialized with measured data.

Since we do not have a closed system but have mass exchange and mixing with the atmosphere below the lowermost model

altitude and above the uppermost altitude, the atmospheric state is not predicted for the lowermost and uppermost altitudes.5

Prediction is only possible from the second to one below the uppermost altitude. This restricted altitude range we henceforth

call ‘nominal altitude range’. Instead, the atmospheric state of the uppermost and lowermost altitude is estimated by linear

interpolation of measured values at times t and t+ ∆t and used as boundary condition for prediction within the nominal

altitude range. Alternatively, derivatives at the border can be approximated by asymmetric difference quotients.

We use the following convention: Atmospheric state variables are sampled on a regular latitude-altitude grid. For some10

gridpoints, no valid measurements may be available but we assume that for each state variable we have a contiguous subset of

this grid with valid measurements. For state variable g, we have a total of Jg valid measurements within the ‘nominal altitude

range’, each denoted by index j. A state variable in this context is either air density ρ (g = 0) or the mixing ratio of one species

vmrg . The nominal altitude range at latitude φ is the altitude range where, for each gridpoint, a valid measurement is available

at the gridpoint itself, and for its northern, southern, upper, lower and diagonal neighbours. The use of asymmetric difference15

quotients can be emulated by generating artificial border values by extrapolation which guarantee that each gridpoint within the

nominal altitude and latitude range has all required northern, southern, upper, lower and diagonal neighbours. The availability

of neighbour-values is necessary to allow the calculation of numerical derivatives of the state variable with respect to latitude

and altitude. Further, we have Kg border elements of each quantity g, each denoted by index k. And finally, for each state

variable g, we have a total of Lg = Jg +Kg gridpoints, with indices l.20

3.3 Integration in operator notation

For further steps (error propagation and the solution of the inverse problem) it is convenient to rewrite the prediction of air

density and mixing ratios in matrix notation. For this purpose, we differentiate the predicted air densities (Eq. 10) and mixing

ratios (Eqs. 11–13) with respect to air density and mixing ratios of the gases under assessment at all relevant locations. The

sensitivities of the densities of the first predictive step with respect to the initial densities at the same latitude and altitude are25

∂ρi+1(φ,z)
∂ρi(φ,z)

=
1
2

[
2− ∆tp

∆φ

[
v(φ,z)
r

(
∆tp
∆φ
· v(φ,z)

r
+

∆tp
∆z

w(φ,z)
)

+
∆tp
∆φ

v(φ−∆φ,z)v(φ,z)
r2

]
(15)

−∆tp
∆z

[
w(φ,z)

(
∆tp
∆φ
· v(φ,z)

r
+

∆tp
∆z

w(φ,z)
)

+
∆tp
∆z

w(φ,z−∆z)w(φ,z)
]]

We further differenciate predicted air densities with respect to air densities at the adjacent southern latitude but the same

altitude.

∂ρi+1(φ,z)
∂ρi(φ−∆φ,z)

=
1
2

[
∆tp
∆φ
· v(φ−∆φ,z)

r
· cos(φ−∆φ)

cos(φ)

(
1 +

∆tp
∆φ
· v(φ−∆φ,z)

r
+

∆tp
∆z

w(φ−∆φ,z)
)]

(16)30
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The derivative of the predicted air densities with respect to air densities at the adjacent northern latitude but the same altitude

is

∂ρi+1(φ,z)
∂ρi(φ+ ∆φ,z)

=
1
2

[
∆tp
∆φ
· v(φ+ ∆φ,z)

r
· cos(φ+ ∆φ)

cos(φ)

(
− 1 +

∆tp
∆φ
· v(φ,z)

r
+

∆tp
∆z

w(φ,z)
)]

. (17)

As a next step we differenciate predicted air densities with respect to the initial air densities at the next higher altitude but the

same latitude.5

∂ρi+1(φ,z)
∂ρi(φ,z+ ∆z)

=
1
2

[
∆tp
∆z
· (r+ ∆z)2

r2
w(φ,z+ ∆z) ·

(
− 1 +

∆tp
∆φ
· v(φ,z)

r
+

∆t
∆z

w(φ,z)
)]

(18)

The derivative of the predicted air densities with respect to the initial air densities at the next lower altitude but the same latitude

is

∂ρi+1(φ,z)
∂ρi(φ,z−∆z)

=
1
2

[
∆tp
∆z

w(φ,z−∆z)
(r−∆z)2

r2
·
(

1 +
∆tp
∆φ

v(φ,z−∆z)
r−∆z

+
∆tp
∆z

w(φ,z−∆z)
)]

. (19)

Finally we differentiate the predicted air densities with respect to the initial air densities at the adjacent southern latitude and10

higher altitude

∂ρi+1(φ,z)
∂ρi(φ−∆φ,z+ ∆z)

=−1
2

[
v(φ−∆φ,z)

r
· ∆tp

∆φ
· ∆tp

∆z
· (r+ ∆z)2

r2
· cos(φ−∆φ)

cos(φ)
w(φ−∆φ,z+ ∆z)

]
(20)

and vice versa

∂ρi+1(φ,z)
∂ρi(φ+ ∆φ,z−∆z)

=−1
2

[
w(φ,z−∆z)

∆tp
∆z
· ∆tp

∆φ
· (r−∆z)2

r2
· cos(φ+ ∆φ)

cos(φ)
· v(φ+ ∆φ,z−∆z)

r−∆z

]
(21)

where i is the index of the time increment, and where φ±∆φ and z±∆z refer to the adjacent model gridpoints in latitude and15

altitude, respectively.

For mixing ratios, the respective derivatives are:

∂vmri+1(φ,z)
∂vmri(φ,z)

= 1−
(

∆tp
∆φ

)2

· v(φ,z)
r2

· 1
2
[
v(φ,z) + v(φ−∆φ,z)

]
(22)

−
(

∆tp
∆z

)2

·w(φ,z) · 1
2
[
w(φ,z) +w(φ,z−∆z)

]
− ∆tp

2r2(∆φ)2 cos(φ)

[(
Kφ(φ,z) +Kφ(φ+ ∆φ,z)

)
· cos

(
φ+

∆φ
2

)

+
(
Kφ(φ,z) +Kφ(φ−∆φ,z)

)
cos
(
φ− ∆φ

2

)]
− ∆tp

2r2(∆z)2

[(
r+

∆z
2

)2(
Kz(φ,z) +Kz(φ,z+ ∆z)

)
20

+
(
r− ∆z

2

)2(
Kz(φ,z) +Kz(φ,z−∆z)

)]
−Loss(month,φ,z)∆tp;

∂vmri+1(φ,z)
∂vmri(φ+ ∆φ,z)

= (23)

−∆tp
∆φ
· v(φ,z)

2r

(
1− ∆tp

∆φ
· v(φ,z)

r

)
+

∆tp
2r2(∆φ)2 cos(φ)

·
(
Kφ(φ,z) +Kφ(φ+ ∆φ,z)

)
cos(φ+

∆φ
2

);
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∂vmri+1(φ,z)
∂vmri(φ−∆φ,z)

= (24)

v(φ,z)
2r

· ∆tp
∆φ

(
1 +

∆tp
∆φ
· v(φ−∆φ,z)

r

)
+

∆tp
2r2(∆φ)2 cos(φ)

·
(
Kφ(φ,z) +Kφ(φ−∆φ,z)

)
cos(φ− ∆φ

2
);

∂vmri+1(φ,z)
∂vmri(φ,z+ ∆z)

= (25)5

−1
2
·w(φ,z) · ∆tp

∆z

(
1− ∆tp

∆z
w(φ,z)

)
+

∆tp
2r2(∆z)2

(r+
∆z
2

)2

(
Kz(φ,z) +Kz(φ,z+ ∆z)

)
;

∂vmri+1(φ,z)
∂vmri(φ,z−∆z)

= (26)

∆tp
∆z
· 1

2
·w(φ,z)

(
1 +w(φ,z−∆z)

∆tp
∆z

)
+

∆tp
2r2(∆z)2

(r− ∆z
2

)2

(
Kz(φ,z) +Kz(φ,z−∆z)

)
,

where Loss(month,φ,z) is the relative loss rate in the respective month at latitude φ and altitude z. These derivatives are10

simplifications in a sense that they do not consider the full chemical Jacobian but assume instead that the source strength

depends on no other concentration than the actual concentration of the same species. For the typical long-lived so-called

tropospheric source gases considered here, like SF6 or CFCs, this assumption is appropriate. Pretabulated loss rates are used

which have been calculated by locally integrating loss rates over an entire month at a time resolution adequate to resolve

the diurnal cycle. From the monthly losses, the Loss(month,φ,z) values, which are the contribution of losses to the partial15

derivatives of the local mixing ratios with respect to the initial local mixing ratios, are calculated as the secant of the local

decay curve.

With these expressions, the prediction of air density and volume mixing ratio can be rewritten in matrix notation for a single

micro time increment:

ρi+1 =




ρl=1

...

ρL0



i+1

= Dρ;iρi =




IK 0 0

Wi 0

0 Dρ,nom







ρI;k=1,K0

ρi;k=1,K0

ρi;j=K0+1,L0


 (27)20
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where
Dρ;i is the L0×L0 Jacobian matrix of air density for time increment i, i.e. the sensitivities of the prediction with

respect to the initial state, ∂ci+1,m

∂ci,n
, here m and n run over the model gridpoints

IK is K0×K0 identity;

0 are zero submatrices of the required dimensions;

Wi is a K0× 2K0-dimensional interpolation matrix;

Dρ;nom is an J0×L0 Jacobian containing the partial derivatives ∂ρi+1;j/∂ρi;l, applied to the nominal altitude range;

ρI;k=1,K0
is the K0-dimensional vector of air densities in the border region after the final timestep, i.e. for the time of

the next measurement;

ρi;k=1,K0
is the K0-dimensional vector of air densities in the border region at the current timestep as resulting from

interpolation in time;

ρi;j=K0+1,L0
is the K0-dimensional vector of air densities in the nominal region at the current timestep as resulting from

integration according to the MacCormack scheme as described above.
Since the source term depends on air density, the integration in matrix notation for vmr requires simultaneous treatment of

vmr and air density, and we get, using notation accordant with air density:


 ρi+1

vmri+1


=




ρl=1

...

ρL0

vmrg;l=1

...

vmrg;
∑
Lg




= Di


 ρi

vmrg;i


=




Dρ;i 0 0 0

0 IK 0 0

0 Wi 0

Dg,nom







ρi,l=1,L0

vmrg;I,k=1,Kg

vmrg;i,k=1,Kg

vmrg;i,j=Kg+1,Lg




(28)5

where Di is the total Jacobian with respect to air densities and all involved gas mixing ratios. Note that

1. The Jacobian Di is time-dependent because it includes submatrices controlling the interpolation between the initial time

and the end time. In the case of vmr, a further time dependence is introduced by the time-dependent source function.

2. the first ‘row’ of the Jacobian matrix includes identity IK because the prediction is not supposed to change the measured

ρI and vmrI at the end of the macro time increment. This value is used to construct the boundary condition. Row is here10

written in quotes because the elements of this ‘row’ are matrices in themselves. Introduction of unity Jacobian elements

is necessary because Eqs. (27–28) are autonomized, originally non-autonomous systems of differential equations.

3. W is used to interpolate the boundary state between the initial time of the micro time interval, t+ (i− 1)∆tp, and the

time at the end of the time interval t+ ∆t to give the atmospheric state at the border region at time t+ i∆tp.

4. The Jacobian submatrices Dρ,nom and Dg,nom are used to predict the atmospheric state in the nominal range after one15

further micro time increment from the atmospheric state at the current time and the boundary condition. Its elements are

10
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described in Eqs. (15–21) and (22–26). The part of Dg,nom which refers to the border mixing ratios (vmrg;I,k=1,Kg
) is

zero. In the case of multiple species, Dg,nom has a block diagonal structure.

5. No simple mapping mechanism between the field of atmospheric state variables sampled at latitudes and altitudes and

the vectors ρ and vmrg is provided because the fields are irregular in a sense that the number of relevant altitudes is

latitude-dependent. Pointer variables have to be used instead.5

For the macro time increment ∆t we get

 ρI

vmrI


=

(
1∏

i=I

Di

)
 ρ0

vmr0


 (29)

3.4 Prediction errors

Let S0 be the L×L covariance matrix describing the uncertainties of all involved measurements ρ0 and vmr0, with diagonal

elements s0;l,l = σ2
0;l,l and L=

∑gases
0 Lg . We assume that these measurement errors in the state variables used for the pre-10

diction are the only relevant error sources. With S0 and
∏1
i=IDi available, generalized Gaussian error propagation for ρI and

vmrI can be easily formulated as:

SI =

(
1∏

i=I

Di

)
S0

(
1∏

i=I

Di

)T
. (30)

Even if S0 is diagonal, i.e. the initial errors are assumed to be uncorrelated, error propagation through the forward model will

generate non-zero error covariances in SI representing the atmospheric state at time t+ ∆t. SI will be needed in the inversion15

of circulation and mixing coefficients described in Section 4.

3.5 A note on finite resolution measurements

The measurements used are not a perfect image of the true atmospheric state but contain some prior information. In the case of

the IMK data, a priori profiles are usually set zero, and the constraint is built with a Tikhonov-type first order finite differences

smoothing constraint (c.f. von Clarmann et al. (2009). That means that, besides the mapping of measurement and parameter20

errors, the only distortion of the truth via the retrieval is reduced altitude resolution; no other effect of the prior information is

to be considered. Usually, any comparison between modelled and measured fields requires application of the averaging kernels

of the retrieval to the model data in order to account for the smoothing by the constraint of the retrieval (assuming that the

model grid is much finer than the resolution of the retrieval).

In our case, the situation is different: The model is initialized with measurements of reduced altitude resolution, and the25

fields predicted by the model are then compared to measurements of the same altitude resolution. It is fair to assume that the

model does not dramatically change the altitude resolution of the profiles, and thus comparable quantities are compared when

the residuals between predicted and measured atmospheric state are evaluated.

11
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3.6 A note on numerical mixing

Let the initial mixing ratio field be homogeneous except one point with delta-type excess mixing ratio. Assume further a

homogeneous velocity field and zero mixing coefficients. If the velocity is such that the position of the excess mixing ratio is

displaced during ∆t by a distance which is not equal with an integer multiple of the gridwidth, then the resulting distribution

will no longer be a delta-type distribution but will be smoothed. The widening of the delta peak we refer to as numerical5

mixing. The MacCormack transport scheme is designed to fight this diffusivity but some higher order effects may still survive.

One might think that, during the inversion, the widening is misinterpreted as mixing, leading to too large mixing coefficients.

Again, in our case, the situation is different: The widening does not accumulate over the ∆tp timesteps, because we first

calculate the operator
∏1
i=IDi, which is applied only once to the initial field, which avoids accumulation of numerical mixing

over timesteps. Still one widening process as described above can occur, when the forward model leads to a position of the10

new peak which cannot be represented in the grid chosen. However, since the gas distributions vmrg;I at the end of timestep

∆t are sampled on the same grid, the maximum in the true atmosphere would be widened in the same way, and there would be

no residual the inversion would try to get rid of by increasing the mixing coefficients. And the next time step ∆t is initialized

again with measured data, which also excludes accumulation of numerical mixing effects.

These considerations aside, there are other numerical artefacts: These are related to the numerical evaluation of partial15

derivatives of the state variables in our transport scheme chosen. Particularly in the case of delta functions in the state variable

field, these cause side-wiggles behind and smearing in front of the transported structure. To keep these artefacts small, it is

necessary to set the spatial grid fine enough that every structure is represented by multiple gridpoints.

4 The inverse problem

For convenience, we combine the variables of the initial atmospheric state and the predicted state at the end of the macro time20

interval, respectively, into the vectors

x̃0 =


 ρ0

vmr0


= (x̃0;1 . . . x̃0;L)T , (31)

and

x̃I =


 ρI

vmrI


= (x̃I;1 . . . x̃I;L)T , (32)

The related subsets of x̃0 and x̃I which contain only state variables in the nominal altitude range but not those in the border25

region are x0 = (x0;1 . . .x0;J)T and xI = (xI;1 . . .xI;J)T , respectively. The reason why the distinction between x̃ and x is

made is that, contrary to the prediction step, for the inversion vector elements related to the interpolation of values in the

border region are no longer needed. Further, we combine the fields of meridional and vertical wind components and mixing
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coefficients into the vector

q =




v

w

Kφ

Kz



, (33)

and assume constant velocities and mixing coefficients during the macro timestep. To infer circulation patterns and mixing

coefficients from the measurements of air densities and mixing ratios, the Jacobian matrix F,

F = (f1, . . . ,fN ) = (fj,n) =
(
∂xI,j
∂qn

)
=
(
∂xI
∂q1

, . . . ,
∂xI
∂qN

)
, (34)5

is needed, where N = 4J where J =
∑gases

0 Jg , because there are four unknown quantities, vj , wj , Kφ, and Kz at each

gridpoint of the nominal region where these variables shall be inferred. The elements of F are calculated from Eq. (28) by

application of the product rule:

f̃n =
I∑

i=1

[(
i+1∏

k=I

Dk

)(
∂Di

∂qn

)( 1∏

k=i−1

Dk

)
x̃0

]
, (35)

where the tilde symbol in f̃n indicates that the vectors resulting from Eq. (35) still include the border elements which still have10

to be discarded to obtain fn. The quantity f̃nis more efficiently computed using the following recursive scheme, where f̃ l,i is

the respective column of the Jacobian after micro timestep i:

f̃n,i = Difn,i−1 +
∂Di

∂qn

(
1∏

k=i−1

Dk

)
x̃0 (36)

With the argument of D specifying the column of the D-matrix such that Dc,i(φ,z) relates ρi+1(φ,z) to ρi(φ,z), Dρ,i(φ±
∆φ,z) relates ρi+1(φ,z) to ρi(φ±∆φ,z), and Dρ,i(φ,z±∆z) relates ρi+1(φ,z) to ρi(φ,z±∆z), and for vmr accordingly,15

the entries of Di relevant to v are:

∂ ∂ρi+1(φ,z)
∂ρi(φ,z)

∂v(φ,z)
=− ∆tp

2∆φ
·
(

∆tp
∆φ
· 2v(φ,z) + v(φ−∆φ,z)

r2
+ 2

∆tp
∆z
· w(φ,z)

r

)
(37)

∂ ∂ρi+1(φ+∆φ,z)
∂ρi(φ+∆φ,z)

∂v(φ,z)
=−1

2
·
(

∆tp
∆φ

)2

· v(φ+ ∆φ,z)
r2

(38)

20

∂ ∂ρi+1(φ+∆φ,z)
∂ρi(φ,z)

∂v(φ,z)
=

1
2r
· ∆tp

∆φ
· cos(φ)

cos(φ+ ∆φ)
·
(

1 + 2
∆tp
∆φ
· v(φ,z)

r
+

∆tp
∆z

w(φ,z)
)

(39)

∂ ∂ρi+1(φ,z)
∂ρi(φ+∆φ,z)

∂v(φ,z)
=

1
2
·
(

∆tp
∆φ

)2

· v(φ+ ∆φ,z)
r2

· cos(φ+ ∆φ)
cos(φ)

(40)
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∂ ∂ρi+1(φ−∆φ,z)
∂ρi(φ,z)

∂v(φ,z)
=

1
2r
· ∆tp

∆φ
· cos(φ)

cos(φ−∆φ)
·
(
− 1 +

∆tp
∆φ
· v(φ−∆φ,z)

r
+

∆tp
∆z

w(φ−∆φ,z)
)

(41)

∂ ∂ρi+1(φ,z+∆z)
∂ρi(φ,z)

∂v(φ,z)
=

1
2
· ∆tp

∆z
· ∆tp

∆φ
· r2

(r+ ∆z)2

w(φ,z)
r

(42)

5

∂ ∂ρi+1(φ,z)
∂ρi(φ,z+∆z)

∂v(φ,z)
=

1
2
· ∆tp

∆z
· ∆tp

∆φ
· (r+ ∆z)2

r3
w(φ,z+ ∆z) (43)

∂ ∂ρi+1(φ+∆φ,z)
∂ρi(φ,z+∆z)

∂v(φ,z)
=−1

2
· ∆tp

∆φ
· ∆tp

∆z
· (r+ ∆z)2

r3
· cos(φ)

cos(φ+ ∆φ)
w(φ,z+ ∆z) (44)

∂ ∂ρi+1(φ−∆φ,z+∆z)
∂ρi(φ,z)

∂v(φ,z)
=−1

2
· ∆tp

∆φ
· ∆tp

∆z
· r

(r+ ∆z)2
· cos(φ)

cos(φ−∆φ)
·w(φ−∆φ,z) (45)10

∂ ∂vmri+1(φ,z)
∂vmri(φ,z)

∂v(φ,z)
=−

(
∆tp
∆φ

)2

· 1
r2
·
(
v(φ,z) +

v(φ−∆φ,z)
2

)
(46)

∂ ∂vmri+1(φ+∆φ,z)
∂vmri(φ+∆φ,z)

∂v(φ,z)
=−

(
∆tp
∆φ

)2

· v(φ+ ∆φ,z)
2r2

(47)

15

∂ ∂vmri+1(φ,z)
∂vmri(φ−∆φ,z)

∂v(φ,z)
=

1
2r
· ∆tp

∆φ
·
(

1 +
∆tp
∆φ
· v(φ−∆φ,z)

r

)
(48)

∂ ∂vmri+1(φ+∆φ,z)
∂vmri(φ,z)

∂v(φ,z)
=

1
2r

(
∆tp
∆φ

)2
v(φ+ ∆φ,z)

r
(49)

∂ ∂vmri+1(φ,z)
∂vmri(φ+∆φ,z)

∂v(φ,z)
=−∆tp

∆φ
· 1
r

(
1
2
− ∆tp

∆φ
· v(φ,z)

r

)
(50)20

Entries not mentioned here are zero. Entries relevant to w are:

∂ ∂ρi+1(φ,z)
∂ρi(φ,z)

∂w(φ,z)
=−∆tp

∆φ
· ∆tp

∆z
· v(φ,z)

r
−
(

∆tp
∆z

)2

w(φ,z)− 1
2

(
∆tp
∆z

)2

w(φ,z−∆z) (51)

∂ ∂ρi+1(φ,z+∆z)
∂ρi(φ,z+∆z)

∂w(φ,z)
=−1

2

(
∆tp
∆z

)2

w(φ,z+ ∆z) (52)

25

∂ ∂ρi+1(φ,z)
∂ρi(φ+∆φ,z)

∂w(φ,z)
=

1
2
· ∆tp

∆φ
· ∆tp

∆z
· v(φ+ ∆φ,z)

r
· cos(φ+ ∆φ)

cos(φ)
(53)
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∂ ∂ρi+1(φ+∆φ,z)
∂ρi(φ+∆φ,z−∆z)

∂w(φ,z)
=

1
2
· ∆tp

∆φ
· ∆tp

∆z
· v(φ,z)

r
· cos(φ)

cos(φ+ ∆φ)
(54)

∂ ∂ρi+1(φ,z+∆z)
∂ρi(φ,z)

∂w(φ,z)
=

1
2
· ∆tp

∆z
· r2

(r+ ∆z)2
·
(

1 +
∆tp
∆φ
· v(φ,z)

r
+ 2

∆tp
∆z
·w(φ,z)

)
(55)

5

∂ ∂ρi+1(φ,z)
∂ρi(φ,z+∆z)

∂w(φ,z)
=

1
2
·
(

∆tp
∆z

)2

· (r+ ∆z)2

r2
·w(φ,z+ ∆z) (56)

∂ ∂ρi+1(φ,z−∆z)
∂ρi(φ,z)

∂w(φ,z)
=

1
2
· ∆tp

∆z
· r2

(r−∆z)2
·
(
− 1 +

∆tp
∆φ
· v(φ,z−∆z)

r−∆z
+

∆tp
∆z
·w(φ,z−∆z)

)
(57)

∂ ∂ρi+1(φ+∆φ,z−∆z)
∂ρi(φ,z)

∂w(φ,z)
=−1

2
· ∆tp

∆φ
· ∆tp

∆z
· r2

(r−∆z)2
· cos(φ)

cos(φ+ ∆φ)
v(φ,z−∆z)
r−∆z

(58)10

∂ ∂ρi+1(φ,z+∆z)
∂ρi(φ+∆φ,z)

∂w(φ)
=−1

2
· ∆tp

∆φ
· ∆tp

∆z
· r2

(r+ ∆z)2
· cos(φ+ ∆φ)

cos(φ)
· v(φ+ ∆φ,z)

r
(59)

∂ ∂vmri+1(φ,z)
∂vmri(φ,z)

∂w(φ,z)
=−

(
∆tp
∆z

)2

·
(
w(φ,z) +

w(φ,z−∆z)
2

)
(60)

15

∂ ∂vmri+1(φ,z+∆z)
∂vmri(φ,z+∆z)

∂w(φ,z)
=−

(
∆tp
∆z

)2

· w(φ,z+ ∆z)
2

(61)

∂ ∂vmri+1(φ,z)
∂vmri(φ,z−∆z)

∂w(φ,z)
=

1
2
· ∆tp

∆z
·
(

1 +w(φ,z−∆z) · ∆tp
∆z

)
(62)

∂ ∂vmri+1(φ,z+∆z)
∂vmri(φ,z)

∂w(φ,z)
=

1
2
·
(

∆tp
∆z

)2

·w(φ,z+ ∆z) (63)20

∂ ∂vmri+1(φ,z)
∂vmri(φ,z+∆z)

∂w(φ,z)
=−1

2
· ∆tp

∆z
·
(

1− 2
(∆tp)
(∆z)

·w(φ,z)
)

(64)

Entries relevant toKφ are:

∂ ∂vmri+1(φ,z)
∂vmri(φ,z)

∂Kφ(φ,z)
=− ∆tp

(∆φ)2
· 1

2r2
·

cos
(
φ+ ∆φ

2

)
+ cos

(
φ− ∆φ

2

)

cos(φ)
(65)

25

∂ ∂vmri+1(φ∓∆φ,z)
∂vmri(φ∓∆φ,z)

∂Kφ(φ,z)
=− ∆tp

(∆φ)2
· 1

2r2
·

cos
(
φ∓ ∆φ

2

)

cos(φ∓∆φ)
(66)
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∂ ∂vmri+1(φ,z)
∂vmri(φ−∆φ,z)

∂Kφ(φ,z)
=

1
2r2
· ∆tp

(∆φ)2
· cos(φ− ∆φ

2 )
cos(φ)

(67)

∂ ∂vmri+1(φ,z)
∂vmri(φ+∆φ,z)

∂Kφ(φ,z)
=

1
2r2
· ∆tp

(∆φ)2
· cos(φ+ ∆φ

2 )
cos(φ)

(68)

5

∂ ∂vmri+1(φ+∆φ,z)
∂vmri(φ,z)

∂Kφ(φ,z)
=

1
2r2
· ∆tp

(∆φ)2
· cos(φ+ ∆φ

2 )
cos(φ+ ∆φ)

(69)

∂ ∂vmri+1(φ−∆φ,z)
∂vmri(φ,z)

∂Kφ(φ,z)
=

1
2r2
· ∆tp

(∆φ)2
· cos(φ− ∆φ

2 )
cos(φ−∆φ)

(70)

And finally, entries relevant toKz are:

∂ ∂vmri+1(φ,z)
∂vmri(φ,z)

∂Kz(φ,z)
=− ∆tp

(∆z)2
·
(
r+ ∆z

2

)2
+
(
r− ∆z

2

)2

2r2
(71)10

∂ ∂vmri+1(φ,z∓∆z)
∂vmri(φ,z∓∆z)

∂Kz(φ,z)
=− ∆tp

(∆z)2
·
(
r∓ ∆z

2

)2

2(r∓∆z)2
(72)

∂ ∂vmri+1(φ,z+∆z)
∂vmri(φ,z)

∂Kz(φ,z)
=

1
2
· ∆tp

(∆z)2
·
(
r+ ∆z

2

)2

(r+ ∆z)2
(73)
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∂ ∂vmri+1(φ,z)
∂vmri(φ,z−∆z)

∂Kz(φ,z)
=

1
2
· ∆tp

(∆z)2
·
(
r− ∆z

2

)2

r2
(74)

∂ ∂vmri+1(φ,z)
∂vmri(φ,z+∆z)

∂Kz(φ,z)
=

1
2
· ∆tp

(∆z)2
·
(
r+ ∆z

2

)2

r2
(75)

∂ ∂vmri+1(φ,z−∆z)
∂vmri(φ,z)

∂Kz(φ,z)
=

1
2
· ∆tp

(∆z)2
·
(
r− ∆z

2

)2

(r−∆z)2
(76)20

We linearize the prediction with respect to wind and mixing coefficients

xI = x0 + F(q− q0). (77)

Assuming linearity and Gaussian statistics, the most likely set q of winds and mixing ratios during the macro time interval

minimizes the following cost function:

χ2
1 = (xm;I −xI)T S−1

r (xm;I −xI) (78)25

≈ (xm;I −x0−F(q− q0))T S−1
r (xm;I −x0−F(q− q0))
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where xm;I is the measured state at the end of the macro time step and Sr is the error covariance matrix of the residual, which

is, under the assumption that prediction error and measurement errors are uncorrelated, the sum of the prediction covariance

matrix and the measurement covariance matrix, both after the macro time step:

Sr = Sm,I + Sp, (79)

where Sp is an J×J-matrix containing those elements of SI which are relevant toxI . Sm,I is the measurement error covariance5

matrix of the atmospheric state after the macro time step. The minimization of the cost function gives the following estimate q̂

of winds and mixing coefficients:

q̂ = q0 +
(
FTS−1

r F
)−1

FTS−1
r (xm;I −xI) (80)

The matrix FTS−1
r F can be singular either because the related system of equations is under-determined or ill-posed due to

nearly linearly dependent equations. Singularity is fought by adding the following constraint term to the cost function of Eq.10

(78):

χ2
con = (q− qa)T R(q− qa) (81)

χ2 = χ2
1 +χ2

con, (82)

where qa is some prior assumption on velocities and mixing coefficients. R is a J×J regularization matrix of which the choice

is discussed below. From this, the constrained estimate of velocities and mixing coefficients can be inferred:15

q̂ = qa +
(
FTS−1

r F + R
)−1

FTS−1
r (xm;I −xI) (83)

An equivalent formulation, which is more efficient if the dimension of q is larger than that of x (underdetermined problem),

but which requires a non-singular regularization matrix, and which does not give easy access to diagnostics (see below), is

(Rodgers, 2000):

q̂ = qa + R−1FT
(
FR−1FT + Sr,I

)−1
(xm;I −xI). (84)20

The covariance matrix characterizing the uncertainty of estimated winds and mixing coefficients is

Sq =
(
FTS−1

r F + R
)−1

FTS−1
r F

(
FTS−1

r F + R
)−1

, (85)

and the estimated winds and mixing coefficients are related to the true ones as

A =
∂q̂

∂q
=
(
FTS−1

r F + R
)−1

FTS−1
r F, (86)

which is unity in the case of unconstrained estimation of q. In the case of Newtonian iteration, Eqs. (85-86) are evaluated using25

the Jacobian F valid at the solution.
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Due to the concentration-dependence of the source function and the q-depecdence of F, Eq. (29) is valid only in linear

approximation. This is helped by putting the inversion in the context of a Newtonian iteration (see, e.g., Rodgers (2000, p. 85).

Eq. (80) becomes

q̂it+1 = qit +
(
FTitS

−1
r Fit

)−1
FTitS

−1
r (xm;I −xI,it), (87)

where it is the iteration index. Equation (83) becomes5

q̂it+1 = qit +
(
FTitS

−1
r Fit + R

)−1 (
FTitS

−1
r (xm;I −xI,it)−R(qit− qa)

)
(88)

or alternatively

q̂it+1 = qa +
(
FTitS

−1
r Fit + R

)−1
FTitS

−1
r (xm;I −xI,it + Fit(qit− qa)) , (89)

and Eq. (84) becomes

q̂it+1 = qa + R−1FTit
(
FitR−1FTit + Sr,I

)−1
(xm;I −xI,it + Fit(qit− qa)) . (90)10

With qa = 0 and diagonal R = γI we get the smallest possible velocities and mixing coefficients still consistent with the

measurement, where tuning parameter γ will be set depending on how large fit residuals the user still considers to be ‘consis-

tent’. With R being diagonally blockwise composed of squared and scaled first order finite differences operators and qa = 0,

smooth fields of wind vectors and mixing coefficients can be enforced. Setting qa the result of the previous macro time step

and R its reciprocal uncertainty plus some margin for allowance of variability of velocity and mixing coefficients in time15

corresponds to sequential data assimilation. And finally, if prior knowledge is formed by independent measurements and their

reciprocal uncertainties as constraint matrix, or within the debatable framework of Bayesian statistics, estimates q̂ would even

be the most probable estimate of velocities and mixing ratios.

5 Proof of concept

5.1 Prediction of the atmospheric state20

In a first step we test the predictive power of the formalism defined by Eqs. (3–29). Since the formalism itself is deductive

and starts from a well established theoretical concept, the purpose of the test is solely to verify that the implementation of the

formalism is correct and that involved numerical approximations are adequate. As a consequence of the Bonini paradox (c.f.

Bonini (1963) and Starbuck (1975)), a model is the harder to understand the more complex it is. While the predictive power of

a model usually increases with complexity, this does not necessarily hold for its explanatory power. Thus we have decided to25

test our model on the basis of very simple test cases, where major failure of the model is immediately obvious. Four test cases

have been chosen, each dedicated to one kinematic variable (v, w, Kφ and Kz), while the other three were set zero.

In the first case, v was set close to the Courant limit (Courant et al., 1928) (about 0.17cos(φ) ms−1) everywhere. As one

would expect from the continuity equation applied to a spherical atmosphere, no changes in air density except boundary effects
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at the poles were observed, and structures near the equator were transported by about 4◦ within a month, as expected from

the equation of motion. A Gaussian-shaped perturbation of a halfwidth of one latitudinal gridwidth (4◦) causes an upwind

wiggle of less than 0.7% of the amplitude of the perturbation at a meridional velocity of one gridpoint per month. There is no

discernable change in the width of the transported structure. Similarly, for the second case a constant field of w of 1.1× 10−3

ms−1 lifts a structure upwards by about 3 km per month. Mixing coefficients were verified to smear out structures in the5

respective direction while leaving air density and structures in the orthogonal direction unchanged.

5.2 Inversion of simulated measurements

Case studies based on real measurement data are inadequate as the sole proof of concept because the truth is unknown and the

result thus is unverifiable. Instead we first test our scheme on the basis of simulated atmospheric states and consider the scheme

as verified if the velocities and mixing coefficients used to simulate the atmospheric states are sufficiently well reproduced. In10

the noise-free well conditioned case one might even expect, within the numerical precision of the system, the exact reproduction

of the reference data; due to the – weak but non-zero – dispersivity of the numerical transport scheme the wiggles discussed in

the previous subsection cause, at some gridpoints, D-matrix entries of the wrong sign. In order to fight resulting convergence

problems of the inversion, at least some small regularization is adequate, even if the system of equations to be solved is well or

over-determined. Since the system in reality is, in tendency, ill-conditioned and the constraint applied to the inversion prevents15

reproduction of the reference data, we use a variety of idealized tracers instead. After this initial test of functionality, more and

more realistic test cases are constructed in order to study the competing influence of constraint and measurement data on the

solution.

The trace gas distributions used for this test were chosen such that the rows of Equation (80) are independent. Four artificial

gases were chosen whose mixing ratios had a linear, quadratic and two variants of exponential latitude and altitude depen-20

dences, respectively. Further, a hydrostatic air density distribution was assumed. After successful separate inversion of vphi,

vz , Kphi and Kz , these kinematic variables were inverted in combination, whereby no further problems were encountered.

In a following step, the linear latitude-dependence was replaced by a stepwise linear function, i.e., a dependence on the

absolute amount of latitude. Here it showed up that, besides ill-posedness due to linear dependence of equations, the unphysical

upwind wiggles in the vicinity of the mixing ratio peak as discussed in the previous subsection can trigger errors which are25

boosted during the iteration. This problem, which is associated with sharp structures and large velocities (of the order of

one gridwidth per macrotimestep) can be solved by the use of a smoothing regularization matrix R as discussed in the last

paragraph of Section 4, however at the cost of degraded spatial resolution of the result.

5.3 Case Study with MIPAS measurements

The risk of case studies based on simulated data typically is that not all difficulties encountered with real data are foreseen30

during theoretical studies. In order to demonstrate applicability to real data, global monthly latitude/altitude distributions of

CFC-12, CH4, N2O and SF6 (Kellmann et al., 2012; Plieninger et al., 2015; Haenel et al., 2015) measured with the Michelson

Interferometer for Passive Atmospheric Sounding (MIPAS) (Fischer et al., 2008) were used. The purpose of these tests is
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demonstration of the feasibility of the method presented. An investigation of the atmospheric circulation on the basis of this

method applied to MIPAS data is left for a companion paper. For this proof of concept, sinks of these long-lived tracers have

been ignored but these will certainly be considered in scientific applications.

For this case study, zonal monthly mean distributions of air densities and mixing ratios of these four species from September

and October 2010 were used. Figure 1 shows the measured distributions of these quantities in September (left column) and5

October (middle column), and the residuals between the measured and predicted contributions for October (right column). The

residuals are reasonably small and show, except for methane in the polar upper stratosphere, no patterns which would hint at

peculiarities with the inferred kinematic quantities.

The resulting circulation vectors which best explain the change of the mixing ratio distributions from September to October

2010 are shown in the upper left panel of Figure 2. Winter polar subsidence, summer polar upwelling, the mesospheric over-10

turning circulation, the upper and lower branches of the Brewer-Dobson circulation and the tropical pipe are clearly visible.

Details of the tropical pipe are visible in the right upper panel. As expected, the Brewer-Dobson circulation is much more

pronounced in the northern (early) winter hemisphere. Velocities are roughly consistent with mean ages of stratospheric air as

determined by Stiller et al. (2008) and Haenel et al. (2015). While the inferred field of circulation vectors shows many detail

features demanding scientific investigation in their own right, the reproduction of the expected features justifies confidence15

in the method proposed. Resulting mixing coefficients Kφ and Kz are shown in the left and right lower panels, respectively.

Negative mixing ratios indicate counter-gradient mixing, which seems to be most pronounced in the tropical upper stratosphere.

Jacobian elements with respect to v values and K values seem to form a null space. Thus the K-values were constrained

to zero using diagonal components only in the R matrix diagonal blocks associated with the K values. The strength of this

constraint was adjusted such that the K values were as small as possible as long as this did not boost the residual. Resulting20

Kφ and Kz distributions are shown in Figure 3.

The errors in the estimated transport velocities and mixing coefficients have been estimated according to Equation (85) and

are shown in Figure 3, middle column. The errors in the transport velocities are in the one percent range, indicating that the

information contained in the measurements is adequate for the purpose of retrieving circulation parameters. It seems even

possible to improve the time resolution of the circulation analysis and aim at weakly instead of monthly temporal sampling.25

Larger errors above 65 km altitude and at the bins closest to the pole are border effects, resulting from the fact that no

symmetric derivatives can be calculated there. The uncertainties in Kφ show the same patterns as the Kφ values themselves.

6 Discussion

The analysis of the age of stratospheric air can be understood as an integrated view at the equations of motion of stratospheric

air, because the total travel time of the air parcel through the stratosphere is represented. The refinement of this method30

which analyzes the mean age just considers a weighted mean of the above, but it is still an integral method. Contrary to these

integral methods, our direct inversion scheme supports a – in approximation, due to discrete sampling in the time domain

– differential view at the same problem. The related advantages are: (a) independence of assumptions on the age spectrum,
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Figure 1. : Measured distributions in September (left column), October (middle column) and residual distributions between October mea-

surements and predictions for October (right column) for air density and mixing ratios of CFC-12, CH4, N2O, and SF6 (top to bottom). Grey

gridboxes indicate non-availability of valid data.
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Figure 2. : Resulting circulation vectors (vφ(z,φ);vz(z,φ)) (upper left panel), where colours on the red side of the rainbow colour scale

represent higher velocities; a detail of this (upper right panel); mixing coefficients Kphi (lower left panel) and Kz (lower right panel).

because during each time step mixing is explicitly considered; (b) insensitivity to SF6 depletion in the mesosphere (c.f., e.g.,

Reddmann et al., 2001; Stiller et al., 2012), because the scheme uses the actual entry values of subsiding air as a reference;

(c) applicability to non-ideal tracers in the stratosphere; since the atmospheric state is updated for each time step by measured

value, depletion does not accumulate, even if no sink functions are considered; and (d) the logical circle that the lifetimes of

non-ideal tracers depend on their trajectories (and thus atmospheric circulation), while the determination of the circulation5

requires knowledge of the lifetimes, can be solved. Our scheme requires knowledge only on the local, not the global, lifetimes;

(e) the method is an empirical method which does not involve any dynamical model, i.e. the forces which cause the circulation

are not required. The method only finds that kinematic state of the atmosphere which, according to the continuity equation,

fits best to the measurements. These kinematic state values are provided as model diagnostics to assess the performance of

dynamical models. Due to these advantages, the major problems in the empirical analysis of the Brewer-Dobson circulation as10

mentioned by Butchart (2014) are solved. Problems related to our method are (a) sensitivity of the inferred kinematic quantities
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Figure 3. : Estimated uncertainties of vφ(z,φ), (upper left panel), vz(z,φ) (upper right panel), Kphi (lower left panel) and Kz (lower right

panel).

to locally varying biases, (b) a tendency towards ill-posedness of the inversion if distributions of too few tracers with too similar

morphology are used, and (c) the usual artefacts arising if the numerical discretization is chosen too coarse. Results of the case

study presented in Section 5.3 suggest that these problems have successfully been solved in the current application of the

proposed scheme.

7 Conclusions and outlook5

We have presented a method which infers mixing coefficients and effective velocities of a 2-D atmosphere by inversion of the

continuity equation. The main steps of this procedure are (a) integration of the continuity equation over time to predict pressure

and mixing ratios for given initial pressures and mixing ratios and initially guessed velocities and mixing coefficients; (b)

propagation of errors of initial pressures and mixing ratios onto the predicted pressures and mixing ratios, by differentiation of
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the predicted state with respect to the initial state and generalized Gaussian error propagation; (c) estimation of the sensitivities

of the predicted state with respect to the velocities and mixing coefficients; and (d) minimization of a quadratic cost function

involving the residual between measured and predicted state at the end of the forecasting interval by inversion of the continuity

euqation. The inferred velocities are suggested to be used as a model diagnostic in order to avoid problems encountered with

other model diagnostics like mean age of stratospheric air. It is important to note that the diagnostics inferred here are effective5

transport velocities and effective mixing coefficients in a sense that they include eddy transport and diffusion terms. Thus, they

cannot simply be compared to zonal mean velocities and mixing coefficients of a 3D model but the eddy terms have to be

considered when these diagnostics quanities are calculated. The application of this method on SF6 distributions measured by

MIPAS (Stiller et al., 2012) to diagnose the Brewer-Dobson circulation are discussed in a companion paper. Obvious future

activities are the extension of this method to three dimensions and inclusion of sink functions of non-inert species to explore a10

larger number of tracers in order to better constrain the related inverse problem.

Appendix A: From 3D to 2D

The inference of effective two-dimensional transport velocities and effective mixing coefficients from measurements discussed

in the main paper relies on the fact that under usual conditions (species chemical lifetimes large compared to transport lifetimes,

slow change of mean state compared to the effect of eddies) all eddy effects can be parametrized by transport and mixing terms.15

The additional velocities and mixing coefficients are, under the assumptions stated above, gas-independent. The formalism

discussed below is largely based on Ko et al. (1985).

A1 Eddy and mean flow transport

The change of partial number density (ρg) of a gas g with time t within a moving air parcel depends only on the net source

function. Diffusion, i.e. effects on scales not resolved by our system, are neglected:20

∂ρg
∂t

+
∂(u ρg)
∂x

+
∂(v ρg)
∂y

+
∂(w ρg)
∂z

= Sg (A1)

The same reads in geographical coordinates, where u and v are redefined accordingly, using the shallow water approximation:

∂ρg
∂t

+
1

r cosφ
∂(u ρg)
∂λ

+
1
r

(∂v ρg)
∂φ

+
∂(w ρg)
∂z

= Sg (A2)

Reynolds decomposition into zonal mean and eddy terms gives

∂ρg
∂t

= Sg −
1

r cosφ
∂((u+u′)(ρg + ρ′g))

∂λ
− 1
r

∂((v+ v′)(ρg + ρ′g))
∂φ

− ∂((w+w′)(ρg + ρ′g))
∂z

(A3)25

Zonal averaging gives:

∂ρg
∂t

= Sg −
1

r cosφ
∂((u+u′)(ρg + ρ′g))

∂λ
− 1
r

∂((v+ v′)(ρg + ρ′g))
∂φ

− ∂((w+w′)(ρg + ρ′g))
∂z

(A4)

Zonal mean longitudinal advection is zero.

∂ρg
∂t

= Sg −
1
r

∂((v+ v′)(ρg + ρ′g))
∂φ

− ∂((w+w′)(ρg + ρ′g))
∂z

(A5)
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Expansion gives

∂ρg
∂t

= Sg −
1
r

∂(v ρg + v ρ′g + v′ ρg + v′ ρ′g)
∂φ

− ∂(w ρg +w ρ′g +w′ ρg +w′ ρ′g)
∂z

(A6)

= Sg −
1
r

∂(v ρg + v ρ′g + v′ ρg + v′ ρ′g)
∂φ

− ∂(w ρg +w ρ′g +w′ ρg +w′ ρ′g)
∂z

.

Zonal averages are constant and thus can be factorized. Zonal averages of linear functions of zonal perturbations are by

definition zero, and we get5

∂ρg
∂t

= Sg −
1
r

∂(v ρg + v′ ρ′g)
∂φ

− ∂(w ρg +w′ ρ′g)
∂z

. (A7)

This can be rewritten in terms of volume mixing ratios, if number-density-weighted zonal averaging is performed.

∂vmrg
∂t

=
Sg
ρ
− 1
r

∂(v vmrg + v′ vmr′g)
∂φ

− ∂(w vmrg +w′ vmr′g)
∂z

, (A8)

where ρ is air density.

The only term which causes that zonal mean transport is different from transport described by zonal mean velocity and10

mixing ratio gradient are the eddy flux terms 1
rv
′vmr′g and w′ vmr′g . In the following section these terms shall be further

investigated.

A2 Estimation of mixing ratio perturbances

To quantitatively asses the eddy terms, an estimate of the mixing ratio perturbations is needed. For this purpose, Equation (A8)

is further simplified by the assumption that the velocity field is non-divergent:15

∂vmrg
∂t

=
Sg
ρ
− v

r

∂vmrg
∂φ

− ∂

∂φ
v′ vmr′g −w

∂vmrg
∂z

− ∂

∂z
w′ vmr′g (A9)

We divide Equation (A2) by the zonal mean air density and subtract Equation (A9) to get

∂vmrg
∂t

− ∂vmrg
∂t

+
1

r cosφ
∂(u vmrg)

∂λ
+

1
r

(∂v vmrg)
∂φ

+
∂(w vmrg)

∂z
= (A10)

Sg −Sg +
v

r

∂vmrg
∂φ

+
∂

∂φ
v′ vmr′g +w

∂vmrg
∂z

+
∂

∂z
w′ vmr′g.

Rearrangement and application of the definition of the perturbation of the source and mixing ratio terms gives20

∂vmr′g
∂t

+
1

r cosφ
∂(u vmrg)

∂λ
+

1
r

(∂v vmrg)
∂φ

+
∂(w vmrg)

∂z
− v

r

∂vmrg
∂φ

− ∂

∂φ
v′ vmr′g −w

∂vmrg
∂z

(A11)

− ∂

∂z
w′ vmr′g = S′g.

Ignoring quadratic terms in the perturbation according to perturbation theory this simplifies to

∂vmr′g
∂t

+
1

r cosφ
∂(u vmrg)

∂λ
+

1
r

(∂v vmrg)
∂φ

+
∂(w vmrg)

∂z
− v

r

∂vmrg
∂φ

−w∂vmrg
∂z

= S′g. (A12)

We further ignore meridional and vertical mean advection, which are much smaller than zonal advection and get25

∂vmr′g
∂t

+
1

r cosφ
∂(u vmrg)

∂λ
+

1
r

(∂v′ vmrg)
∂φ

+
∂(w′ vmrg)

∂z
= S′g. (A13)
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We apply the assumption of divergence-free velocities also to the remaining terms:

∂vmr′g
∂t

+
u

r cosφ
∂(vmrg)
∂λ

+
v′

r

(∂vmrg)
∂φ

+w′
∂(vmrg)
∂z

= S′g. (A14)

Rearrangement and Reynolds decomposition of u and vmrg gives
( ∂
∂t

+
u+u′

r cosφ
∂

∂λ

)
vmr′g +

v′

r

(∂vmrg)
∂φ

+w′
∂(vmrg)
∂z

= S′g, (A15)

where we have used that ∂vmrg

∂λ = 0. Perturbation theory also applies to higher order terms involving u′ and vmr′g:5
( ∂
∂t

+
u

r cosφ
∂

∂λ

)
vmr′g +

v′

r

∂vmrg
∂φ

+w′
∂vmrg
∂z

= S′g. (A16)

Assuming that eddy time scales are much shorter than mean transport time scales, Equation (A15) can be solved to give vmr′g .

We introduce eddy displacements α′ and β′ by implicit definitions
( ∂
∂t

+
u

r cosφ
∂

∂λ

)
α′ = v′ (A17)

and10
( ∂
∂t

+
u

r cosφ
∂

∂λ

)
β′ = w′ (A18)

These equations state that the substantial change of the latitudinal displacement equals the latitudinal velocity perturbation, and

mutatis mutandum for vertical displacement and speed. This relies on the assumption that the zonal mean mixing ratio changes

much slower than the mixing ratio perturbations.

Similarly we get for the eddy chemical term S′g15

( ∂
∂t

+
u

r cosφ
∂

∂λ

)
γ′ = S′g (A19)

With these expressions the v′, w′ and S′g terms in Equation (A16) are replaced:
( ∂
∂t

+
u

r cosφ
∂

∂λ

)
vmr′g +

( ∂
∂t

+
u

r cosφ
∂

∂λ

)α′
r

∂vmrg
∂φ

+
( ∂
∂t

+
u

r cosφ
∂

∂λ

)
β′
∂vmrg
∂z

= (A20)

( ∂
∂t

+
u

r cosφ
∂

∂λ

)
γ′

This allows to calculate vmr′g:20

vmr′g =−α
′

r

∂vmrg
∂φ

−β′ ∂vmrg
∂z

+ γ′ (A21)

A3 Evaluation of the eddy flux

The eddy flux terms can now be written as

1
r
v′vmr′g =

v′

r

(
− α′

r

∂vmrg
∂φ

−β′ ∂vmrg
∂z

+ γ′
)

= (A22)

− 1
r2
v′α′

∂vmrg
∂φ

− v′β′

r

∂vmrg
∂z

+
1
r
v′γ′ =25

− 1
r2
Kφφ

∂vmrg
∂φ

− 1
r
Kφz

∂vmrg
∂z

+
1
r
v′γ′
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and

w′vmr′g = w′
(
− α′

r

∂vmrg
∂φ

−β′ ∂vmrg
∂z

+ γ′
)

= (A23)

−1
r
w′α′

∂vmrg
∂φ

−w′β′ ∂vmrg
∂z

+w′γ′ =

−1
r
Kzφ

∂vmrg
∂φ

−Kzz
∂vmrg
∂z

+w′γ′

where the following definitions have been used:5

Kφφ = v′α′ (A24)

Kφz = v′β′ (A25)

Kzz = w′β′ (A26)

Kzφ = v′α′ (A27)

Equations (A22) and (A23) can be written in matrix notation:10

 w′vmr′g

v′vmr′g


=−


 Kzz Kzφ

Kφz Kφφ






∂vmrg

∂z

1
r
∂vmrg

∂φ


+


 w′γ′

v′γ′


 (A28)

For long-lived tracers, whose transport lifetimes are much longer than their chemical lifetimes, the chemical eddy term can be

ignored and we get

 w′vmr′g

v′vmr′g


=−


 Kzz Kzφ

Kφz Kφφ






∂vmrg

∂z

1
r
∂vmrg

∂φ


 (A29)

There is no explicit dependence of the eddy flux on the species. Thus, the same eddy flux tensor can be applied to all species,15

subject to the approximations used in itsderivation.

A4 Analysis of the eddy tensor

The eddy flux tensor can be decomposed into a symmetric and an antisymmetric part:

 Kzz Kzφ

Kφz Kφφ


=


 Kzz K∗zφ

K∗φz Kφφ


+


 0 ψ

−ψ 0


 (A30)

where the following definitions are used:20

K∗φz =K∗zφ =
Kzφ +Kφz

2
(A31)

and

ψ =
Kzφ−Kφz

2
(A32)
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A4.1 The symmetric part

The fraction of the eddy flux governed by the symmetric part of the eddy flux tensor is
(
∂vmrg
∂t

)

symm

= (A33)

−1
r

∂

∂φ

(
v′vmr′

)
symm

− ∂

∂z

(
w′vmr′

)
symm

=

−∇ ·


 w′vmr′

v′vmr′



symm

=5

−∇ ·




 Kzz K∗zφ

K∗φz Kφφ






∂vmrg

∂z

1
r
∂vmrg

∂φ




 ,

where the shallow water approximation is used in the third line to get the form of a divergence. Symmetric tensors can be

diagonalized:

Q−1


 Kzz K∗zφ

K∗φz Kφφ


Q =


 K1,1 0

0 K2,2


 (A34)

Using10

Q−1 =


 q1,1 q1,2

q2,1 q2,2



−1

=


 r1,1 r1,2

r2,1 r2,2


= R (A35)

With QR being unity, Equation (A33) can be rewritten as
(
∂vmrg
∂t

)

symm

= (A36)

−∇ ·


QR


 Kzz K∗zφ

K∗φz Kφφ


QR




∂vmrg

∂z

1
r
∂vmrg

∂φ




=

−∇ ·


Q


 K1,1 0

0 K2,2


R




∂vmrg

∂z

1
r
∂vmrg

∂φ




 .15

This can be written component-wise:
(
∂vmrg
∂t

)

symm

=− 1
r2

∂

∂φ
q2,2K2,2r2,2

∂vmrg
∂φ

− ∂

∂z
q1,1K1,1r1,1

∂vmrg
∂z

(A37)

This expression has the formal structure of a Fickian diffusion equation. Thus that part of the Eddy flux which is associated

with the symmetric part of the eddy flux tensor can be understood as an additional mixing term.
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A4.2 The antisymmetric part

The fraction of the eddy flux governed by the antisymmetric part of the eddy flux tensor is
(
∂vmrg
∂t

)

anti

= −1
r

∂

∂φ

(
v′vmr′

)
anti
− ∂

∂z

(
w′vmr′

)
anti

(A38)

= −∇ ·




 0 ψ

−ψ 0






∂vmrg

∂z

1
r
∂vmrg

∂φ






= −1
r

∂

∂φ

(
ψ
∂vmrg
∂z

)
+

∂

∂z

(
ψ

1
r

∂vmrg
∂φ

)
5

= −1
r

∂ψ

∂φ

∂vmrg
∂z

− ψ

r

∂

∂φ

∂vmrg
∂z

+
1
r

∂ψ

∂z

∂vmrg
∂φ

− ψ

r2

∂vmrg
∂φ

+
ψ

r

∂

∂z

∂vmrg
∂φ

= −1
r

∂ψ

∂φ

∂vmrg
∂z

+
(
∂ψ

∂z
− ψ

r

)
1
r

∂vmrg
∂φ

We introduce virtual velocities

ṽ =
∂ψ

∂z
− ψ

r
(A39)

and10

w̃ =
1
r

∂ψ

∂φ
; (A40)

With this we get
(
∂vmrg
∂t

)

anti

=−ṽ 1
r

∂vmrg
∂φ

− w̃ ∂vmrg
∂z

(A41)

This expression has the formal structure of a transport equation. Thus, that part of the Eddy flux which is associated with the

antisymmetric part of the eddy flux tensor can be understood as an additional transport term.15
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